
SÉRIE ELETROQUÍMICA, POTENCIAIS E ESPONTANEIDADE

PROF. IURY CÂNDIDO

SÉRIE DE REATIVIDADE QUÍMICA

Por meio de experiências, verifica-se que determinadas substâncias têm maior potencial para se oxidarem ou reduzirem em relação a outras. Assim, pode-se dispor essas substâncias em uma sequência que indique a preferência em ceder ou receber elétrons. Essa sequência é denominada série de reatividade química ou fila de reatividade química.

Tendência para ceder elétrons

Tendência para receber elétrons

FONC(BrIS

Reatividade crescente (aumento da eletronegatividade)

POTENCIAL DE ELETRODO (E)

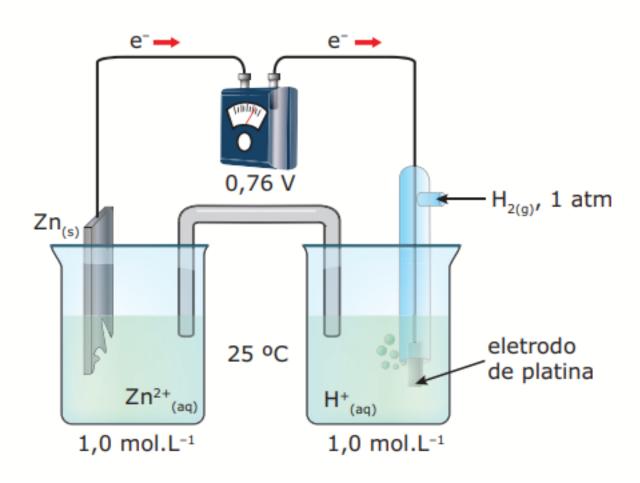
Em vez de prever se uma reação ocorrerá ou não pela análise da fila de reatividade, podem ser realizadas previsões a partir de potenciais elétricos medidos em volts (V).

- A. Em eletroquímica, s\u00e3o encontrados 2 tipos de potenciais:
 - Potencial de oxidação (E_{oxi}): Potencial relativo à tendência de ceder elétrons (oxidar).
 - Potencial de redução (E_{red}): Potencial relativo à tendência de receber elétrons (reduzir).

- B. O potencial de eletrodo é influenciado por dois fatores:
 - Temperatura: O aumento da temperatura favorece a perda de elétrons.

Maior temperatura \Rightarrow Maior E_{oxi}

Concentração dos íons em solução:
 O aumento dessa concentração favorece


o aumento do potencial.

Maior concentração de cátions ⇒ Menor E_∞

Maior concentração de ânions ⇒ Maior E_{axi}

Potenciais padrão de redução de eletrodo		$Pb^{2+}_{(aq)} + 2e^- \rightarrow Pb_{(s)}$	-0,13
	Potencial de	$2H^{+}_{(a_{0})} + 2e^{-} \rightarrow H_{a_{(0)}}$	0,00
Semirreações	redução (Eº)	$Sn^{a+}_{(aq)} + 2e^- \rightarrow Sn^{a+}_{(aq)}$	+0,15
	em volts (V)	$Cu^{2+}_{(aq)} + 2e^- \rightarrow Cu_{(q)}$	+0,34
$\text{Li}^*_{(aq)} + e^- \rightarrow \text{Li}_{(q)}$	-3,04	$H_2O_{(1)} + \frac{1}{2}O_{(0)} + 2e^- \rightarrow 2OH^{(ac)}$	+0,40
$K^*_{(aq)} + e^- \rightarrow K_{(c)}$	-2,92	$Cu^+_{(nq)} + e^- \rightarrow Cu_{(q)}$	+0,52
Ba ²⁺ _(mi) + 2e ⁻ → Ba _(N)	-2,90	$I_{2(n)} + 2e^- \rightarrow 2I^{(nn)}$	+0,54
Ca2+ ₍₈₀₎ + 2e ⁻ → Ca ₍₄₎	-2,87	$2H^{+}_{(aq)} + O_{2(q)} + 2e^{-} \rightarrow H_{2}O_{2(aq)}$	+0,68
	-2,71	Fe^{3+} $+ e^- \rightarrow Fe^{3+}$ (aq)	+0,77
Na ⁺ _(m) + e ⁻ → Na _(k)		$Ag^{+}_{(nq)} + e^{-} \rightarrow Ag_{(n)}$	+0,80
$Mg^{2+}_{(aij)} + Ze^- \rightarrow Mg_{(s)}$	-2,36	$4H^{+}_{(se)} + 2NO_{3}^{-}_{(se)} + 2e^{-} \rightarrow 2H_{3}O_{(r)} + 2NO_{3(g)}$	+0,80
$A\ell^{3+}_{(ni)} + 3e^- \rightarrow A\ell_{(n)}$	-1,66	$Hg^{3+}_{(M)} + 2e^- \rightarrow Hg_{(K)}$	+0,85
$Mn^{2+}_{(aij)} + 2e^- \rightarrow Mn_{(s)}$	-1,18	$4H^{+}_{(aij)} + NO^{-}_{3(aij)} + 3e^{-} \rightarrow 2H_{2}O^{-}_{(i)} + NO^{-}_{(ii)}$	+0,96
$Zn^{2+}_{(aq)} + 2e^- \rightarrow Zn_{(s)}$	-0,76	Br ₂₍₁₎ + 2e ⁻ → 2Br ⁻ (≈)	+1,07
$Cr^{3+}_{(sq)} + 3e^- \rightarrow Cr_{(q)}$	-0,74	$14H^{+}_{(Aij)} + CrO_{2}^{2-}_{(Aij)} + 6e^{-} \rightarrow 2Cr^{2+}_{(Aij)} + 7H_{2}O_{(2)}$	+1,33
$Fe^{2+}_{(aij)} + 2e^- \rightarrow Fe_{(ii)}$	-0,44	$C\ell_{2(g)} + 2e^- \rightarrow 2C\ell^{(aq)}$	+1,36
$Cr^{a+}_{(aq)} + e^- \rightarrow Cr^{a+}_{(aq)}$	-0,41	$Au^{3+}_{(aq)} + 3e^- \rightarrow Au_{(s)}$	+1,50
$Co^{2+}_{(aq)} + 2e^- \rightarrow Co_{(s)}$	-0,28	$8H^{+}_{(aq)} + MnO_{q}^{-} + 5e^{-} \rightarrow Mn^{2+}_{(aq)} + 4H_{2}O_{(1)}$	+1,51
$Ni^{2+}_{(aq)} + 2e^- \rightarrow Ni_{(s)}$	-0,25	$2H^{+}_{(aij)} + H_{2}O_{2(aij)} + 2e^{-} \rightarrow 2H_{2}O_{(1)}$	+1,78
$Sn^{2+}_{(aq)} + 2e^- \rightarrow Sn_{(s)}$	-0,14	$F_{2(q)} + 2e^- \rightarrow 2F^{(aq)}$	+2,87

Experimentalmente, foi medido o potencial padrão de cada eletrodo, acoplando-os ao eletrodo padrão de hidrogênio e medindo-se a diferença de potencial por meio de um voltímetro ou um galvanômetro. Observe o exemplo do zinco:

O sentido do fluxo de elétrons mostra que o eletrodo de hidrogênio possui maior capacidade de sofrer redução do que o de zinco. Logo,

$$E_{red}^{o}(hidrog\hat{e}nio) > E_{red}^{o}(zinco)$$

e o voltímetro registra uma diferença de potencial (d.d.p.) igual a 0,76 V. Como a d.d.p. é sempre dada por

$$\Delta E^{0} = E^{0}_{red}(maior) - E^{0}_{red}(menor)$$

e o Eo_{red}(hidrogênio) é zero por convenção, tem-se

$$\Delta E^0 = E_{red}$$
 (hidrogênio) – E_{red} (zinco)

$$0.76 V = 0 - E_{red}^{o}(zinco)$$

$$E_{red}^{o}(zinco) = -0.76 \text{ V}$$

O valor negativo indica que o zinco possui potencial padrão de eletrodo menor do que o do hidrogênio, e sofre oxidação quando reage com H₂. Dessa forma, pode-se generalizar:

- E^o_{red} > 0 (positivo) ⇒ eletrodo sofre redução mais facilmente do que o hidrogênio.
- E^o_{red} < 0 (negativo) ⇒ eletrodo sofre oxidação mais facimente do que o hidrogênio.

OBSERVAÇÕES

 A IUPAC recomenda que os trabalhos eletroquímicos sejam realizados com potenciais de redução. No esquema da determinação dos potenciais, o eletrodo de hidrogênio, que é gasoso, consiste, na prática, em uma placa de platina porosa, que tem a propriedade de adsorver o gás hidrogênio em seus poros, formando-se uma camada de hidrogênio sobre a placa. A platina não participa da reação, pois é inerte. O processo de redução é inverso ao processo de oxidação.

Redução

$$Cu^{2+}_{(aq)} + 2e^{-} \rightarrow Cu^{0}_{(s)}$$
 $E^{0}_{red} = +0,34 \text{ V}$

O inverso é:

Oxidação

$$Cu^{0}_{(s)} \rightarrow Cu^{2+}_{(aq)} + 2e^{-}$$
 $E^{0}_{oxi} = -0,34 \text{ V}$

Logo, o potencial de redução é igual ao potencial de oxidação, com o sinal trocado.

$$E_{red}^0 = -E_{oxi}^0$$

4. Para se calcular o potencial de eletrodo a 25 °C e 1 atm, porém em concentrações diferentes de 1 mol.L⁻¹, utiliza-se uma equação matemática denominada equação de Nernst:

$$E = E^{o} + \frac{0,059}{n} \log []$$

Em que

E⁰ = potencial padrão;

E = potencial a 25 °C com soluções de concentrações em mol.L⁻¹ quaisquer;

0,059 = valor experimental constante a 25 °C;

n = número de elétrons envolvidos na reação;

[] = concentração em mol.L-1 da solução.

Como prever a espontaneidade dos processos eletroquímicos

Serão utilizados, para tais previsões, os potenciais de redução.

- O elemento de maior E^o_{red} ⇒ reduz
- O elemento de menor E^o_{red} ⇒ oxida

Exemplo 1: Reação entre alumínio e ferro.

$$Fe^{2+}_{(aq)} + 2e^{-} \rightarrow Fe^{0}_{(s)}$$
 $E^{0}_{red} = -0.44 \text{ V}$

$$A\ell^{3+}_{(aq)} + 3e^{-} \rightarrow A\ell^{0}_{(s)}$$
 $E^{0}_{red} = -1,66 \text{ V}$

Como o alumínio possui o menor Eº_{red}, ele sofrerá oxidação. Para se obter a equação da reação que ocorre entre os dois elementos, mantém-se a semirreação do ferro e inverte-se a equação do alumínio.

$$Fe^{2+}_{(aq)} + 2e^{-} \rightarrow Fe^{0}_{(s)}$$
 $E^{0}_{red} = -0.44 \text{ V}$ $A\ell^{0}_{(s)} \rightarrow A\ell^{3+}_{(aq)} + 3e^{-}$ $E^{0}_{oxi} = +1.66 \text{ V}$

Observe ainda que o número de elétrons envolvidos nas semirreações não é o mesmo. Para balancear essas equações, multiplica-se a semirreação do ferro por 3 e a do alumínio por 2. Observe que, somando-se as duas semirreações, é obtida a reação global e, somando-se os dois potenciais, é obtida a d.d.p. da reação. Ainda se deve verificar que, ao se multiplicar as reações, os potenciais não variam com as quantidades.

Semirreação de redução:

$$3Fe^{2+}_{(aq)} + 6e^{-} \rightarrow 3Fe^{0}_{(s)}$$

$$E^0 = -0.44 \text{ V}$$

Semirreação de oxidação:

$$2A\ell_{(s)}^{0} \rightarrow 2A\ell_{(aq)}^{3+} + 6e^{-}$$
 Eo = +1,66 V

Reação global:

$$3Fe^{2+}_{(aq)} + 2A\ell^{0}_{(s)} \rightarrow 3Fe^{0}_{(s)} + 2A\ell^{3+}_{(aq)}$$
 $\Delta E^{0} = +1,22 \text{ V}$

Conclui-se que:

- Quando uma reação possui ΔE^o > 0, a reação é espontânea e produz energia elétrica (pilha).
- Quando uma reação possui ΔE^o < 0, a reação é não espontânea e, para ocorrer, consome energia elétrica (eletrólise).

A d.d.p. de uma reação pode ser calculada a partir dos potenciais de redução.

$$\Delta E^0 = E^0(oxidante) - E^0(redutor)$$
ou
$$\Delta E^0 = E^0_{red}(maior) - E^0_{red}(menor)$$