

FÍSICA

3ª SÉRIE Prof. LUCAS

Lista:

01

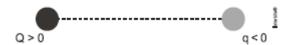
Data: 23 / 03 / 2020

Νo

01. No triângulo retângulo isóceles XYZ conforme desenho abaixo, em que XZ = YZ = 3.0 cm, foram colocadas uma carga elétrica puntiforme QX = +6 nC no vértice X e uma carga elétrica puntiforme QY = +8 nC no vértice Y.

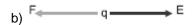
A intensidade do campo elétrico resultante em Z, devido às cargas já citadas é: Dados: o meio é o vácuo e a constante eletrostática do vácuo é $K_0 = 9$. $10^9 \cdot \frac{N \cdot m^2}{C^2}$.

- a) 2 . 105 N/C.
- b) 6 . 10³ N/C.
- c) 8 . 104 N/C.
- d) 104 N/C.
- 02. Duas cargas são colocadas em uma região onde há interação elétrica entre elas. Quando separadas por uma distância d a força de interação elétrica entre elas tem módulo igual a F. Triplicando-se a distância entre as cargas, a nova força de interação elétrica em relação à força inicial, será
- a) diminuída 3 vezes.
- b) diminuída 9 vezes.
- c) aumentada 3 vezes.
- d) aumentada 9 vezes.
- 03. Duas cargas pontuais q_1 e q_2 são colocadas a uma distância R entre si. Nesta situação, observa-se uma força de módulo F_0 sobre a carga q_2 . Se agora a carga q_2 for reduzida à metade e a distância entre as cargas for reduzida para R/4, qual será o módulo da força atuando em q_1 ?
- a) F₀/32.
- b) F₀/2.
- c) 2F₀.
- d) 8F₀.
- e) 16F₀.
- 04. Uma partícula de carga q e massa 10^{-6} kg foi colocada num ponto próximo à superfície da Terra onde existe um campo elétrico uniforme, vertical e ascendente de intensidade E = 10^{5} N/C.

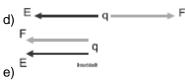


Sabendo que a partícula em equilíbrio, considerando a intensidade da aceleração da gravidade g = 10 m/s², o valor da carga q e o seu sinal são respectivamente:

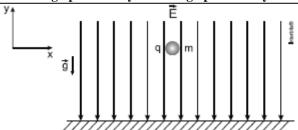
- a) 10⁻³ µC negativa.
- b) 10⁻⁵ μC positiva.
- c) 10⁻⁵ µC negativa.
- d) 10⁻⁴ μC positiva.
- e) 10⁻⁴ μC negativa.
- 05. Considere duas cargas, $Q_A = 4 \mu C$ e $Q_B = -5 \mu C$, separadas por 3 cm no vácuo. Elas são postas em contato e, após, separadas no mesmo local, por 1 cm. Qual o sentido e o valor da força eletrostática entre elas, após o contato?


Considere 1 μ C = 10⁻⁸ C, K₀ = 9 x 10⁹ $\frac{Nm^2}{C^2}$

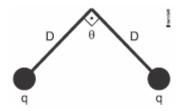
- a) Atração; 0,2 N.
- b) Atração; 2,5 N.
- c) Atração 200,0 N.
- d) Repulsão; 0,2 N.
- e) Repulsão; 22,5 N.
- 06. A respeito da lei de Coulomb, marque a opção CORRETA.
- a) A lei de Coulomb estabelece que a força elétrica é diretamente proporcional à distância entre duas cargas de mesmo sinal.
- b) A lei de Coulomb estabelece que a força elétrica é inversamente proporcional ao produto entre duas cargas de mesmo sinal.
- c) A lei de Coulomb estabelece que a força elétrica é diretamente proporcional ao produto das cargas e inversamente proporcional ao quadrado da distância entre elas.
- d) A lei de Coulomb estabelece que a força elétrica é inversamente proporcional ao produto das cargas e diretamente proporcional ao quadrado da distância entre elas.
- e) A lei de Coulomb estabelece a força de atração entre os corpos.
- 07. Duas cargas elétricas puntiformes, Q e q, sendo Q positiva e q negativa, são mantidas a uma certa distância uma da outra, conforme mostra a figura.



A força elétrica F, que a carga negativa q sofre, e o campo elétrico E, presente no ponto onde ela é fixada, estão corretamente representados por:

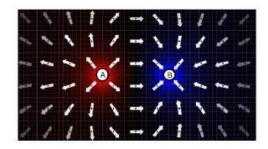


08. Junto ao solo, a céu aberto, o campo elétrico da Terra é E = 150 N/C e está dirigido para baixo como mostra a figura. Adotando a aceleração da gravidade como sendo $g = 10 \text{ m/s}^2$ e desprezando a resistência do ar, a massa m em gramas, de uma esfera de carga $q = -4 \mu\text{C}$ para que ela fique em equilíbrio no campo gravitacional da Terra, é:


f 🖸 /colegiopxsflamboyant - colegiopxsflamboyant.com.br

- a) 0,06.
- b) 0,5.
- c) 0,03.
- d) 0,02.
- e) 0,4.

09. Duas esferas condutoras idênticas de carga $q = 2.0 \,\mu\text{C}$ estão penduradas em fios não condutores de comprimento D = 30,0 cm, conforme apresentado na figura abaixo. Se o ângulo entre os fios vale Θ = 90°, qual é o valor das massas das esferas?


Dados: constante dielétrica $K = 9.0 \times 10^9 \text{ N}$. m^2/c^2 ; aceleração da gravidade $g = 10.0 \text{ m/s}^2$.

- a) 20 g.
- b) 40 g.
- c) 60 g.
- d) 80 g.
- e) 100 g.
- 10. "Fundado em 2002 pelo Prêmio Nobel Carl Wieman, o projeto PhET Simulações Interativas da Universidade de Colorado Boulder (EUA) cria simulações interativas gratuitas de matemática e ciências. As simulações PhET baseiam-se em extensa pesquisa em educação e envolvem os alunos através de um ambiente intuitivo, estilo jogo, onde os alunos aprendem através da exploração e da descoberta".

Disponível em: https://phet.colorado.edu/pt_BR/. Aces-so: 11 dez. 2018.

A figura a seguir foi obtida pelo PhET, sendo que duas partículas A e B eletricamente carregadas, foram colocadas em uma determinada região do espaço. As setas indicam a direção e o sentido das linhas de força do vetor campo elétrico do sistema.

A respeito das cargas elétricas A e B, é correto afirmar que:

- a) Ambas são eletricamente positivas.
- b) Ambas são eletricamente negativas.
- c) B é eletricamente positiva e A é negativa.
- d) A é eletricamente positiva e B é negativa.